Ideals in big Lipschitz algebras of analytic functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed Ideals in Some Algebras of Analytic Functions

We obtain a complete description of closed ideals of the algebra D ∩ lip α , 0 < α ≤ 1 2 , where D is the Dirichlet space and lip α is the algebra of analytic functions satisfying the Lipschitz condition of order α.

متن کامل

Restricted Ideals in Rings of Analytic Functions

Introduction. Let Y be a connected, noncompact Riemann surface, and let A be the ring of all analytic functions on Y. It is known that the ideal theory of the ring A is strikingly similar to the ideal theory of the ring C(X) of all real valued continuous functions on a completely regular topological space X. We show that locally much of the ideal theory of A can be recovered from the ideal theo...

متن کامل

On Closed Ideals of Analytic Functions

1. The closed ideals in the algebra A of all continuous functions fieie) on the unit circle X = {eie: 0^.B<2ir] which have analytic extensions/(z), \z\ <1 have been determined by Beurling and independently by Rudin [5] as follows: Let Hx denote the weak* closure [A]* of A as a subset of Laidm), where m denotes the normalized Lebesgue measure dd/2ir on the circle. A function qEHTM is called inne...

متن کامل

The structure of ideals, point derivations, amenability and weak amenability of extended Lipschitz algebras

Let $(X,d)$ be a compactmetric space and let $K$ be a nonempty compact subset of $X$. Let $alpha in (0, 1]$ and let ${rm Lip}(X,K,d^ alpha)$ denote the Banach algebra of all  continuous complex-valued functions $f$ on$X$ for which$$p_{(K,d^alpha)}(f)=sup{frac{|f(x)-f(y)|}{d^alpha(x,y)} : x,yin K , xneq y}

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2004

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm161-1-3